Skip to content

CGLinearSolver

This component belongs to the category of LinearSolver. The role of the CGLinearSolver is to solve the linear system \(\mathbf{A}x=b\) without any a priori on this system.

In SOFA, the CGLinearSolver follows the well-known conjugate gradient method, which consists in iteratively solving \(r=b-\mathbf{A}x^k\) where r is known as the residual. This residual will be used to compute mutually conjugate vectors p (see the sequence diagram below) which will be used as a basis to find a new approximated solution \(x^{k+1}\).

Note: the CGLinearSolver in SOFA assumes that the right hand side (RHS) vector b is already computed. The computation of b is usually called in the integration scheme through the function computeForce().

Sequence diagram

Usage

The CGLinearSolver requires the use (above in the scene graph) of an integration scheme, and (below in the scene graph) of a MechanicalObject storing the state information that the CGLinearSolver will access.

When using a CGLinearSolver, make sure you carefully chose the value of the free data field iterations, tolerance and threshold. Both tolerance and threshold data must be chosen in accordance with the dimension of the degrees of freedom (DOFs). Usually, the value of these two data is close to the square of the expected error on the DOFs.

Remember that when using an iterative linear solver like the CGLinearSolver, no exact solution can be found. The accuracy of your solution will always depend on the conditioning of your system and your input data (iterations, tolerance and threshold).

Linear system solver using the conjugate gradient iterative algorithm

CompressedRowSparseMatrixMat2x2d

Templates:

  • CompressedRowSparseMatrixMat2x2d

Target: Sofa.Component.LinearSolver.Iterative

namespace: sofa::component::linearsolver::iterative

parents:

  • MatrixLinearSolver

Data

Name Description Default value
name object name unnamed
printLog if true, emits extra messages at runtime. 0
tags list of the subsets the objet belongs to
bbox this object bounding box
componentState The state of the component among (Dirty, Valid, Undefined, Loading, Invalid). Undefined
listening if true, handle the events, otherwise ignore the events 0
parallelInverseProduct Parallelize the computation of the product J*M^{-1}*J^T where M is the matrix of the linear system and J is any matrix with compatible dimensions 0
iterations Maximum number of iterations after which the iterative descent of the Conjugate Gradient must stop 25
tolerance Desired accuracy of the Conjugate Gradient solution evaluating: |r|²/|b|² (ratio of current residual norm over initial residual norm) 1e-05
threshold Minimum value of the denominator (pT A p)^ in the conjugate Gradient solution 1e-05
warmStart Use previous solution as initial solution, which may improve the initial guess if your system is evolving smoothly 0
graph Graph of residuals at each iteration
Name Description Destination type name
context Graph Node containing this object (or BaseContext::getDefault() if no graph is used) BaseContext
slaves Sub-objects used internally by this object BaseObject
master nullptr for regular objects, or master object for which this object is one sub-objects BaseObject
linearSystem The linear system to solve TypedMatrixLinearSystem<CompressedRowSparseMatrixMat2x2d>

CompressedRowSparseMatrixMat3x3d

Templates:

  • CompressedRowSparseMatrixMat3x3d

Target: Sofa.Component.LinearSolver.Iterative

namespace: sofa::component::linearsolver::iterative

parents:

  • MatrixLinearSolver

Data

Name Description Default value
name object name unnamed
printLog if true, emits extra messages at runtime. 0
tags list of the subsets the objet belongs to
bbox this object bounding box
componentState The state of the component among (Dirty, Valid, Undefined, Loading, Invalid). Undefined
listening if true, handle the events, otherwise ignore the events 0
parallelInverseProduct Parallelize the computation of the product J*M^{-1}*J^T where M is the matrix of the linear system and J is any matrix with compatible dimensions 0
iterations Maximum number of iterations after which the iterative descent of the Conjugate Gradient must stop 25
tolerance Desired accuracy of the Conjugate Gradient solution evaluating: |r|²/|b|² (ratio of current residual norm over initial residual norm) 1e-05
threshold Minimum value of the denominator (pT A p)^ in the conjugate Gradient solution 1e-05
warmStart Use previous solution as initial solution, which may improve the initial guess if your system is evolving smoothly 0
graph Graph of residuals at each iteration
Name Description Destination type name
context Graph Node containing this object (or BaseContext::getDefault() if no graph is used) BaseContext
slaves Sub-objects used internally by this object BaseObject
master nullptr for regular objects, or master object for which this object is one sub-objects BaseObject
linearSystem The linear system to solve TypedMatrixLinearSystem<CompressedRowSparseMatrixMat3x3d>

CompressedRowSparseMatrixMat4x4d

Templates:

  • CompressedRowSparseMatrixMat4x4d

Target: Sofa.Component.LinearSolver.Iterative

namespace: sofa::component::linearsolver::iterative

parents:

  • MatrixLinearSolver

Data

Name Description Default value
name object name unnamed
printLog if true, emits extra messages at runtime. 0
tags list of the subsets the objet belongs to
bbox this object bounding box
componentState The state of the component among (Dirty, Valid, Undefined, Loading, Invalid). Undefined
listening if true, handle the events, otherwise ignore the events 0
parallelInverseProduct Parallelize the computation of the product J*M^{-1}*J^T where M is the matrix of the linear system and J is any matrix with compatible dimensions 0
iterations Maximum number of iterations after which the iterative descent of the Conjugate Gradient must stop 25
tolerance Desired accuracy of the Conjugate Gradient solution evaluating: |r|²/|b|² (ratio of current residual norm over initial residual norm) 1e-05
threshold Minimum value of the denominator (pT A p)^ in the conjugate Gradient solution 1e-05
warmStart Use previous solution as initial solution, which may improve the initial guess if your system is evolving smoothly 0
graph Graph of residuals at each iteration
Name Description Destination type name
context Graph Node containing this object (or BaseContext::getDefault() if no graph is used) BaseContext
slaves Sub-objects used internally by this object BaseObject
master nullptr for regular objects, or master object for which this object is one sub-objects BaseObject
linearSystem The linear system to solve TypedMatrixLinearSystem<CompressedRowSparseMatrixMat4x4d>

CompressedRowSparseMatrixMat6x6d

Templates:

  • CompressedRowSparseMatrixMat6x6d

Target: Sofa.Component.LinearSolver.Iterative

namespace: sofa::component::linearsolver::iterative

parents:

  • MatrixLinearSolver

Data

Name Description Default value
name object name unnamed
printLog if true, emits extra messages at runtime. 0
tags list of the subsets the objet belongs to
bbox this object bounding box
componentState The state of the component among (Dirty, Valid, Undefined, Loading, Invalid). Undefined
listening if true, handle the events, otherwise ignore the events 0
parallelInverseProduct Parallelize the computation of the product J*M^{-1}*J^T where M is the matrix of the linear system and J is any matrix with compatible dimensions 0
iterations Maximum number of iterations after which the iterative descent of the Conjugate Gradient must stop 25
tolerance Desired accuracy of the Conjugate Gradient solution evaluating: |r|²/|b|² (ratio of current residual norm over initial residual norm) 1e-05
threshold Minimum value of the denominator (pT A p)^ in the conjugate Gradient solution 1e-05
warmStart Use previous solution as initial solution, which may improve the initial guess if your system is evolving smoothly 0
graph Graph of residuals at each iteration
Name Description Destination type name
context Graph Node containing this object (or BaseContext::getDefault() if no graph is used) BaseContext
slaves Sub-objects used internally by this object BaseObject
master nullptr for regular objects, or master object for which this object is one sub-objects BaseObject
linearSystem The linear system to solve TypedMatrixLinearSystem<CompressedRowSparseMatrixMat6x6d>

CompressedRowSparseMatrixMat8x8d

Templates:

  • CompressedRowSparseMatrixMat8x8d

Target: Sofa.Component.LinearSolver.Iterative

namespace: sofa::component::linearsolver::iterative

parents:

  • MatrixLinearSolver

Data

Name Description Default value
name object name unnamed
printLog if true, emits extra messages at runtime. 0
tags list of the subsets the objet belongs to
bbox this object bounding box
componentState The state of the component among (Dirty, Valid, Undefined, Loading, Invalid). Undefined
listening if true, handle the events, otherwise ignore the events 0
parallelInverseProduct Parallelize the computation of the product J*M^{-1}*J^T where M is the matrix of the linear system and J is any matrix with compatible dimensions 0
iterations Maximum number of iterations after which the iterative descent of the Conjugate Gradient must stop 25
tolerance Desired accuracy of the Conjugate Gradient solution evaluating: |r|²/|b|² (ratio of current residual norm over initial residual norm) 1e-05
threshold Minimum value of the denominator (pT A p)^ in the conjugate Gradient solution 1e-05
warmStart Use previous solution as initial solution, which may improve the initial guess if your system is evolving smoothly 0
graph Graph of residuals at each iteration
Name Description Destination type name
context Graph Node containing this object (or BaseContext::getDefault() if no graph is used) BaseContext
slaves Sub-objects used internally by this object BaseObject
master nullptr for regular objects, or master object for which this object is one sub-objects BaseObject
linearSystem The linear system to solve TypedMatrixLinearSystem<CompressedRowSparseMatrixMat8x8d>

CompressedRowSparseMatrixd

Templates:

  • CompressedRowSparseMatrixd

Target: Sofa.Component.LinearSolver.Iterative

namespace: sofa::component::linearsolver::iterative

parents:

  • MatrixLinearSolver

Data

Name Description Default value
name object name unnamed
printLog if true, emits extra messages at runtime. 0
tags list of the subsets the objet belongs to
bbox this object bounding box
componentState The state of the component among (Dirty, Valid, Undefined, Loading, Invalid). Undefined
listening if true, handle the events, otherwise ignore the events 0
parallelInverseProduct Parallelize the computation of the product J*M^{-1}*J^T where M is the matrix of the linear system and J is any matrix with compatible dimensions 0
iterations Maximum number of iterations after which the iterative descent of the Conjugate Gradient must stop 25
tolerance Desired accuracy of the Conjugate Gradient solution evaluating: |r|²/|b|² (ratio of current residual norm over initial residual norm) 1e-05
threshold Minimum value of the denominator (pT A p)^ in the conjugate Gradient solution 1e-05
warmStart Use previous solution as initial solution, which may improve the initial guess if your system is evolving smoothly 0
graph Graph of residuals at each iteration
Name Description Destination type name
context Graph Node containing this object (or BaseContext::getDefault() if no graph is used) BaseContext
slaves Sub-objects used internally by this object BaseObject
master nullptr for regular objects, or master object for which this object is one sub-objects BaseObject
linearSystem The linear system to solve TypedMatrixLinearSystem<CompressedRowSparseMatrixd>

FullMatrix

Templates:

  • FullMatrix

Target: Sofa.Component.LinearSolver.Iterative

namespace: sofa::component::linearsolver::iterative

parents:

  • MatrixLinearSolver

Data

Name Description Default value
name object name unnamed
printLog if true, emits extra messages at runtime. 0
tags list of the subsets the objet belongs to
bbox this object bounding box
componentState The state of the component among (Dirty, Valid, Undefined, Loading, Invalid). Undefined
listening if true, handle the events, otherwise ignore the events 0
parallelInverseProduct Parallelize the computation of the product J*M^{-1}*J^T where M is the matrix of the linear system and J is any matrix with compatible dimensions 0
iterations Maximum number of iterations after which the iterative descent of the Conjugate Gradient must stop 25
tolerance Desired accuracy of the Conjugate Gradient solution evaluating: |r|²/|b|² (ratio of current residual norm over initial residual norm) 1e-05
threshold Minimum value of the denominator (pT A p)^ in the conjugate Gradient solution 1e-05
warmStart Use previous solution as initial solution, which may improve the initial guess if your system is evolving smoothly 0
graph Graph of residuals at each iteration
Name Description Destination type name
context Graph Node containing this object (or BaseContext::getDefault() if no graph is used) BaseContext
slaves Sub-objects used internally by this object BaseObject
master nullptr for regular objects, or master object for which this object is one sub-objects BaseObject
linearSystem The linear system to solve TypedMatrixLinearSystem<FullMatrix>

GraphScattered

Templates:

  • GraphScattered

Target: Sofa.Component.LinearSolver.Iterative

namespace: sofa::component::linearsolver::iterative

parents:

  • MatrixLinearSolver

Data

Name Description Default value
name object name unnamed
printLog if true, emits extra messages at runtime. 0
tags list of the subsets the objet belongs to
bbox this object bounding box
componentState The state of the component among (Dirty, Valid, Undefined, Loading, Invalid). Undefined
listening if true, handle the events, otherwise ignore the events 0
parallelInverseProduct Parallelize the computation of the product J*M^{-1}*J^T where M is the matrix of the linear system and J is any matrix with compatible dimensions 0
iterations Maximum number of iterations after which the iterative descent of the Conjugate Gradient must stop 25
tolerance Desired accuracy of the Conjugate Gradient solution evaluating: |r|²/|b|² (ratio of current residual norm over initial residual norm) 1e-05
threshold Minimum value of the denominator (pT A p)^ in the conjugate Gradient solution 1e-05
warmStart Use previous solution as initial solution, which may improve the initial guess if your system is evolving smoothly 0
graph Graph of residuals at each iteration
Name Description Destination type name
context Graph Node containing this object (or BaseContext::getDefault() if no graph is used) BaseContext
slaves Sub-objects used internally by this object BaseObject
master nullptr for regular objects, or master object for which this object is one sub-objects BaseObject
linearSystem The linear system to solve TypedMatrixLinearSystem<GraphScattered>

SparseMatrix

Templates:

  • SparseMatrix

Target: Sofa.Component.LinearSolver.Iterative

namespace: sofa::component::linearsolver::iterative

parents:

  • MatrixLinearSolver

Data

Name Description Default value
name object name unnamed
printLog if true, emits extra messages at runtime. 0
tags list of the subsets the objet belongs to
bbox this object bounding box
componentState The state of the component among (Dirty, Valid, Undefined, Loading, Invalid). Undefined
listening if true, handle the events, otherwise ignore the events 0
parallelInverseProduct Parallelize the computation of the product J*M^{-1}*J^T where M is the matrix of the linear system and J is any matrix with compatible dimensions 0
iterations Maximum number of iterations after which the iterative descent of the Conjugate Gradient must stop 25
tolerance Desired accuracy of the Conjugate Gradient solution evaluating: |r|²/|b|² (ratio of current residual norm over initial residual norm) 1e-05
threshold Minimum value of the denominator (pT A p)^ in the conjugate Gradient solution 1e-05
warmStart Use previous solution as initial solution, which may improve the initial guess if your system is evolving smoothly 0
graph Graph of residuals at each iteration
Name Description Destination type name
context Graph Node containing this object (or BaseContext::getDefault() if no graph is used) BaseContext
slaves Sub-objects used internally by this object BaseObject
master nullptr for regular objects, or master object for which this object is one sub-objects BaseObject
linearSystem The linear system to solve TypedMatrixLinearSystem<SparseMatrix>

Examples

CGLinearSolver.scn

<?xml version="1.0"?>
<Node name="root" dt="0.02" gravity="0 -10 0">
    <RequiredPlugin name="Sofa.Component.Constraint.Projective"/> <!-- Needed to use components [FixedProjectiveConstraint] -->
    <RequiredPlugin name="Sofa.Component.LinearSolver.Iterative"/> <!-- Needed to use components [CGLinearSolver] -->
    <RequiredPlugin name="Sofa.Component.Mass"/> <!-- Needed to use components [UniformMass] -->
    <RequiredPlugin name="Sofa.Component.ODESolver.Backward"/> <!-- Needed to use components [EulerImplicitSolver] -->
    <RequiredPlugin name="Sofa.Component.SolidMechanics.FEM.Elastic"/> <!-- Needed to use components [HexahedronFEMForceField] -->
    <RequiredPlugin name="Sofa.Component.StateContainer"/> <!-- Needed to use components [MechanicalObject] -->
    <RequiredPlugin name="Sofa.Component.Topology.Container.Grid"/> <!-- Needed to use components [RegularGridTopology] -->
    <RequiredPlugin name="Sofa.Component.Visual"/> <!-- Needed to use components [VisualStyle] -->
    <VisualStyle displayFlags="showBehaviorModels showForceFields" />
    <DefaultAnimationLoop/>

    <Node>
        <EulerImplicitSolver name="eulerimplicit_odesolver" printLog="false"  rayleighStiffness="0.1" rayleighMass="0.1" />
        <CGLinearSolver iterations="100" tolerance="1e-20" threshold="1e-20" warmStart="1" />
        <MechanicalObject />
        <UniformMass vertexMass="1" />
        <RegularGridTopology nx="4" ny="4" nz="4" xmin="-9" xmax="-6" ymin="0" ymax="3" zmin="0" zmax="3" />
        <FixedProjectiveConstraint indices="0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15" />
        <HexahedronFEMForceField name="FEM" youngModulus="4000" poissonRatio="0.3" method="large" />
    </Node>
</Node>
def createScene(root_node):

   root = root_node.addChild('root', dt="0.02", gravity="0 -10 0")

   root.addObject('RequiredPlugin', name="Sofa.Component.Constraint.Projective")
   root.addObject('RequiredPlugin', name="Sofa.Component.LinearSolver.Iterative")
   root.addObject('RequiredPlugin', name="Sofa.Component.Mass")
   root.addObject('RequiredPlugin', name="Sofa.Component.ODESolver.Backward")
   root.addObject('RequiredPlugin', name="Sofa.Component.SolidMechanics.FEM.Elastic")
   root.addObject('RequiredPlugin', name="Sofa.Component.StateContainer")
   root.addObject('RequiredPlugin', name="Sofa.Component.Topology.Container.Grid")
   root.addObject('RequiredPlugin', name="Sofa.Component.Visual")
   root.addObject('VisualStyle', displayFlags="showBehaviorModels showForceFields")
   root.addObject('DefaultAnimationLoop', )

   node = root.addChild('node')

   node.addObject('EulerImplicitSolver', name="eulerimplicit_odesolver", printLog="false", rayleighStiffness="0.1", rayleighMass="0.1")
   node.addObject('CGLinearSolver', iterations="100", tolerance="1e-20", threshold="1e-20", warmStart="1")
   node.addObject('MechanicalObject', )
   node.addObject('UniformMass', vertexMass="1")
   node.addObject('RegularGridTopology', nx="4", ny="4", nz="4", xmin="-9", xmax="-6", ymin="0", ymax="3", zmin="0", zmax="3")
   node.addObject('FixedProjectiveConstraint', indices="0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15")
   node.addObject('HexahedronFEMForceField', name="FEM", youngModulus="4000", poissonRatio="0.3", method="large")